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Abstract— Deep learning paradigms have revolutionized the
field of brain-computer interfacing and enabled the use of
complex, nuanced methods for recognizing mental states. Prior
work has demonstrated that these models can recognize the
mental state in a variety of tasks, but few have specifically
explored their performance concerning human factors that
come into play with the use of brain-computer interfaces in
day-to-day applications. For this research, we explored the use
of 1D-convolutional neural networks to recognize two mental
states–mental arithmetic and rest–from electroencephalograph
signals. We focused our analysis on three parameters that affect
the design and usability of brain-computer interfaces: input
data representation (i.e. domain), window size (i.e. latency), and
electrode montage (i.e. form-factor). In line with prior work,
we found a clear bias in performance towards the frequency
domain representation. We also found that training our model
with short windows of time (i.e. 0.25s) provided close to peak
accuracy. Furthermore, high accuracy was maintained with
sparse electrode subsets of the full 10-20 system. We discuss
these findings and how they can contribute to ongoing work
to bring deep learning enabled brain-computer interfaces into
day-to-day applications.

I. INTRODUCTION
Mental state classification is a goal of many emerging

fields of research, including neuroergonomics [1], neuropros-
thetics [2], mental workload [3] and mental health studies [4],
[5], [6]. It is increasingly adopted into new research areas
and commercial applications to promote well-being, improve
quality of life, and enhance the cognitive efficiency of
subjects [3], [6], [7]. One promising method of mental state
classification is through the analysis of real-time neurophys-
iological signals using Brain Computer Interfaces (BCIs).
BCIs, introduced a few decades ago, originally suffered
from limited signal processing capabilities, long training
times, bulky setups, and were limited to neuroprosthetic
applications [2], [8], [9]. However, with advances in imaging
hardware, signal processing, and machine learning methods,
the capabilities of BCIs significantly improved and enabled
their use for mental state classification in more data-intensive
applications such as military, entertainment, and research-
related areas [6], [10], [11].

A typical modern BCI consists of a hardware stage and
a software stage. The hardware stage acquires and filters
the physiological signal and the software stage extracts
significant features from the signal, classifies the men-
tal state from those features, and responds by performing
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relevant application-dependent actions. Signal acquisition
can be performed with many methods including electroen-
cephalography(EEG) [9], electrocorticography [12], magne-
toencephalography [13], or direct electrical signal acquisition
in neurons [14]. Among these, EEG signals are preferred for
day-to-day applications–and the focus of our work–owing to
its excellent temporal resolution, high portability, and rela-
tively low cost [15]. However, EEG suffers from low signal-
to-noise ratio (SNR) and high inter-subject variability [16].
Software systems utilizing advanced machine learning (ML)
methods increased the classification accuracy of BCIs above
70%, a commonly accepted threshold for BCI performance
[17], but the accuracy of these ML classifiers largely depends
on human expertise for feature extraction and suffers from
low generalizability across subjects [18], [19].

In recent years deep learning has been adopted into BCIs
to address some of these challenges. Deep learning networks
can accept raw signal data and extract innate features,
eliminating time-consuming preprocessing and reducing re-
liance on human expertise [19], [20]. However, these models
do not offer the level of transparency as other machine
learning models, making them less intuitive to comprehend
the features extracted from the EEG signals. Nonetheless,
several deep learning models were implemented in BCIs
based on the application and the unique advantages those
models provide [16], [19].

A. Current Challenges with BCIs

Although modern BCIs–using EEG acquisition and
equipped with deep learning–have shown promise in research
settings, they have yet to cross over into mainstream, day-to-
day applications. Key to the success of widespread adoption
of BCIs are several factors: high accuracy, small form
factor, few calibrations, low latency, and subject independent
performance [15], [16], [21]. In addition to those factors,
deep learning presents its own questions such as the effects
of different hyper-parameters, input representations, learning
efficiency, and transfer learning. BCIs with many electrodes
require more training and configuration time compared with
fewer electrodes. Previous deep learning methods have also
used window sizes on the order of seconds, introducing
substantial delays in interaction and limiting their utility
in day-to-day applications. These lingering challenges that
prevent the full adoption of BCIs can be split into two
categories: system limitations and human factor limitations.
System limitations refer to inherent hardware and software
constraints [21], [22]. Human factors on the other hand are



related to limitations arising from the usage of BCIs in day-
to-day applications [15], [21].

1) System Limitations: Modern BCI hardware is capable
of higher transfer rates and temporal resolution, but is
vulnerable to ocular movement and requires high pressure
and large contact area at electrode locations [4], [23]. On the
software front, deep learning models yield higher accuracy
and reduce dependence on human expertise, but require long
training periods, frequent re-calibration, and are susceptible
to inter-subject variability of EEG signals [16], [24]. They are
also sensitive to input data representation and require proper
domain selection (time- or frequency-domain representation
of input).

2) Human Factors Limitations: In a typical laboratory
setting, BCIs are equipped with bulky imaging systems:
containing many electrodes and wires, affecting aesthetics,
and adding significant weight. To offer high classification
accuracy BCIs use window sizes on the order of a few sec-
onds: increasing the overall latency for real-time mental state
classification. For day-to-day applications, small aesthetic
form-factor and quick real-time estimates are preferred [5],
[25], [26]. BCIs need to be designed with fewer electrodes
at aesthetically pleasing locations and small window size for
rapid classification.

II. BACKGROUND & RESEARCH SCOPE

A. Background

Several deep learning models have been applied to BCIs
with varying degrees of success depending on the advantages
that particular models provide [19]. Representative models
such as Restricted Boltzmann Machines (RBMs), deep belief
networks (DBN), and autoencoders were used primarily
for feature extraction in BCIs as they are not ideal for
classifications [27], [28]. Discriminative models such as the
Multilayer Perceptron (MLP), Recurrent Neural Network
(RNN), and Convolutional Neural Network (CNN) can be
used for feature extraction and classification. [29] adopted
a DBN-RBM algorithm to detect sleep spindle based on
Power Spectral Density (PSD) features extracted from sleep
EEG signals and achieved an F-1 of 92.78% on a local
dataset. In [30], a combination of manually extracted features
and deep autoencoder neural networks for classification on
sleep state data yielded 80.4% accuracy. In recent years
CNNs have gained popularity for EEG-based classification
by consistently offering very high accuracies with end-to-end
classification capabilities: the networks take EEG data and
produce classification bypassing feature extractions and other
steps. [31] reported an accuracy of 86% using a CNN for fea-
ture extraction and classification. [32] used a 1D convolution
layer on multiclass and binary class datasets and reported
99.7% and 98% accuracies. [33] reported accuracy above
99% using a hybrid time-frequency input representation with
a 2D CNN. Several other studies such as [34], [35], [36]
have also utilized CNNs with different architectures, window
sizes, and electrode montages. But these studies did not focus
on the performance of those classifiers concerning day-to-day
applications.

B. Research Scope
For successful crossover of deep learning enabled BCIs

into day-to-day applications, we argue that their performance
be evaluated on the following qualities: proper selection of
domain to maintain high accuracy, small form-factor suitable
for daily use, low latency to minimize delay, resistance
against inter-subject variability, and transfer learning to re-
duce the need for re-training.

Prior work on BCIs utilizing deep learning has been fo-
cused either on the domain–using time domain or frequency
domain or a hybrid time-frequency representation of the
data–or minimizing the number of electrode channels used
[36], [33], [32]. Numerous works have explored the usage
of BCIs in day-to-day applications such as driving, aviation,
gaming, attention monitoring, and psychotherapy [37], [11],
[38], [6], [4] but fall short in comprehensively addressing the
human factors. Most of these works used data collected in
a laboratory setting and restricted their focus to addressing
only some of the above qualities; a comprehensive analysis
studying the combined effect of these qualities remains
undone.

To address this deficit, we have constructed a 1D-CNN,
representing a BCI, and studied its performance against
the combined effect of the domain, electrode montage, and
window size. We selected electrode montages that either
have significance based on prior literature or have small
and aesthetically pleasing form-factor. We picked window
sizes based on existing literature and small window sizes that
might be suitable for day-to-day applications. We then tested
the network performance for different electrode montages
and window sizes for both time and frequency domains.
Other system limitations of BCIs, including hyper-parameter
optimization for CNNs are out of the scope of this work.

III. MATERIALS AND METHODS

A. Dataset Description
For our experiment, we used the dataset ”EEG During

Mental Arithmetic Tasks Dataset”, publicly available on
PhysioNet and Kaggle [39]. It contains data from 36 healthy
participants (Median age = 18.25, SD = 2.14) selected with
inclusion criteria: normal vision and no mental, cognitive,
or communication disabilities and exclusion criteria: usage
of psychoactive medication, drug or alcohol addiction. Each
participant data is composed of 23 EEG electrode data
collected with Neurocom Monopolar headset (Ukraine, XAI-
MEDICA) using the 10/20 international electrode scheme.
In the experiment, subjects switched between performing
the rest phase and the mental arithmetic phase. Serial
subtraction–a standard stress-inducing protocol in many stud-
ies [40], [41], [42], [43]–was used during the mental arith-
metic phase as an intense cognitive task. EEG data were
recorded for 180s during the rest phase and 60s during the
mental arithmetic phase, sampled at 500Hz and filtered with
0.5Hz high pass filter and 45Hz low pass filter. The database
consists of 72 EDF format files: 1 rest EEG recording and 1
mental arithmetic EEG recording from each participant, and
one CSV file with basic information about the participants.



B. CNN Architecture

A CNN is a neural network that performs convolution
on input data to extract useful information (features). A
typical CNN has the following layers: input layer, convo-
lution layer, pooling layer, dropout layer, flattening layer,
and dense layer. The first layer is the input layer which
receives the preprocessed data and feeds it to the convolution
layer. The convolution layer performs systematic convolution
operations on the data using kernels (a filter that helps extract
specific features from the data) and creates an abstracted
representation of features called a feature map. These feature
maps are large and highly sensitive to the location of features
in data . To avoid these problems, pooling and dropout layers
are used after convolution layers. Pooling layers use max-
pooling operation on feature maps and downsample them,
reducing computational load and making them less transla-
tionally variant. The dropout layer helps avoid overfitting the
data by randomly setting the activation of some of the nodes
to zero, a number determined by dropout rate. The flattening
layer transforms the data into a 1D vector. Dense layers are
fully connected layers that perform further computation and
generate the classification. Readers interested in knowing
more about CNNs are referred to [44], [45].

For our research, we constructed a 1D-CNN with a varying
number of convolutional layers. The generic CNN has an
input layer, convolution layers (immediately followed by
pooling and dropout layers), a flattening layer after the last
convolution layer, a final dropout layer, and three dense
layers–the last of which makes the classification. The dropout
rate for all the drop-out layers in the model was set to 0.5.
A high-level illustration of a CNN with two convolutional
layers is presented in figure 1.

C. Research Context

1) Parameter Selection: To test the suitability of the
classifier for day-to-day applications, we evaluated its per-
formance for various combinations of window sizes and
electrode montages for both domains. We picked window
sizes 1, 2, 4, and 8 seconds based on existing literature that

used deep learning and EEG signals for classification [16],
[35], [34] and compared them with smaller window sizes
0.5 and 0.25 seconds that are more suitable in day-to-day
application scenarios. For electrode montages, we selected
the prefrontal cortex and headband system that closely re-
semble commercially available EEG measurement products.
These products were designed with day-to-day applications
in mind; they have fewer electrodes at aesthetically pleasing
locations. We also selected montages commonly used for
Motor Imagery and P300 type datasets to test if the classifier
can deduce information about the mental state from areas
of the brain other than the prefrontal cortex. The list of
electrode montages and the corresponding electrodes in the
10/20 system are given in table I.

TABLE I
ELECTRODE MONTAGES

Electrode Montage EEG Electrodes
All Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz,

P3, P4, Pz, T3, T4, T5, T6, O1, O2, A1-
A2

Prefrontal Cortex Fp1, Fp2, F7, F8, A1-A2

Headband Fp1, Fp2, F8, F7, T3, T4, T5, T6, O1, O2,
A1-A2

Without PFC F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, T3,
T4, T5, T6, O1, O2, A1-A2

Motor-Imagery System Fz, C3, C4, A1-A2

P300 Pz, A1-A2

2) Preprocessing: The training and test sets were gener-
ated by randomly splitting the dataset into 27 and 9 subjects
and downsampling the EEG data to 128Hz. Based on the
window size and the electrode montage, the correspond-
ing electrode data was extracted and segmented into non-
overlapping window segments. The resultant window seg-
ments were processed into time and frequency domains. For
the time domain, the input was constructed by combining the
segmented windows for each of the extracted EEG channels

Fig. 1. A high-level depiction of our 2-layer CNN architecture.



into a 2D matrix, along with a one-hot vector containing
the corresponding labels for rest or mental arithmetic states.
For the frequency domain, a 2D matrix was constructed
by calculating the power spectral density (PSD) from the
segmented data using Welch’s method [46] for each of the
extracted EEG channels and a one-hot vector containing the
corresponding labels.

3) Experiments: We began by selecting suitable hyperpa-
rameters for comparing the performance of four 1D-CNN
architectures with a varying number of convolutional layers.
Based on the suggestions by [47] we set the learning rate to
0.001 and the batch size to 64. The choice of window size
for CNN architecture comparison was a difficult one, but
we settled on 1s based on its overall performance in various
studies using CNNs for EEG data [48], [35], [34]. Using all
the electrode data provided in the dataset, we ran the four
1D-CNN architectures with both the domains for 50 trials
each. Finally, while keeping the learning rate and batch size
the same, we picked the best performing architecture and ran
5 trials (5-fold cross validation) for every window size and
electrode montage combination for both the domains.

IV. RESULTS

The performance metric chosen for this study was area
under the curve (AUC) score [49].

Fig. 2. Comparison of different CNN architectures. The dotted black line
represents the acceptable threshold for BCIs.

A. CNN architecture

Figure 1 depicts the AUC scores of the classifiers for
time and frequency domains. Improvements were marginal in
magnitude, but the ANOVA indicated a significant improve-
ment in AUC for the 2-layer architecture over the 1- and
4-layer architectures in both the time and frequency domain

(p < .05) and greater performance than 3-layer architecture
(p > 0.1), similar to [32].

B. Window Size

Figure 3 depicts the AUC scores of the classifier for the
time and the frequency domain representation for window
sizes ranging from 0.25s to 8s. We applied a multivari-
ate analysis of variance (MANOVA) to test the impact of
window size on both frequency and time domain AUC,
using the all electrodes montage. Levene’s test indicated
unequal variance in the metrics in the frequency domain,
so we selected the Games-Howell post hoc test for investi-
gation of significant differences in all multiple comparison
tests for consistency. The multivariate result was significant
for window size, Pillai’s Trace = 1.07, F = 5.50, df =
(10, 48), p < .001. Post hoc tests on the time and frequency
domain differences in AUC with respect to window size
were used to follow-up on the MANOVA result. For the time
domain model, the window size of 1s performed best, but the
difference between 0.25s, 0.5s, and 2s was not significant.
The 1s window was significantly better in AUC than 4s and
8s window lengths (all p′s < 0.01) in the time domain
model. For the frequency domain 1s window sizes were
significantly better than larger sizes, (all p′s < 0.05), and
not significantly different than shorter sizes (all p′s > 0.05).

Fig. 3. Performance across window sizes(note that the x-axis is not linear).
The dotted black line represents the acceptable threshold for BCIs.

C. Electrode Montage

Figure 4 depicts the AUC score of the classifier for the
time and frequency domain representation for the previously
mentioned electrode montages quantified with 1s windows.
Our results indicate that for the time domain based model the
classifier performance decreased with decrease in the number
of electrodes. A Multivariate ANOVA was again used to test
for the impact of electrode montage on model performance
with AUC for the time and frequency domain models as
performance metric. The multivariate result was significant
for electrode montage, Pillai’s Trace = 0.94, F = 4.26, df =
(10, 48), p < .001. Due to unequal variances we again used
the Games-Howell post hoc test to follow-up on montage



differences for both domains. This test indicated that for
the time domain models, the all electrode montage was
only significantly better than the Muse and Motor-imagery
system montages, p < .05. In the frequency-domain models,
again the all electrode montage performed best, but only the
contrast with the P300 system was significant, p < .001.

Fig. 4. Performance across electrode montages (window size = 1s). The
dotted black line represents the acceptable threshold for BCIs.

D. Domain

A simple paired t-test was used to contrast AUC from
the time and frequency domain representation of all models,
yielding a test set of 180 comparisons. As expected, the
frequency domain AUC was consistently greater [0.84 vs
0.62] across these tests, t(179) = 34.12, p< .001.

V. DISCUSSION

Our research explored the effects of three independent
variables; domain, window size, and electrode montage; on
the performance of 1D-CNNs. We found that these variables
affect the performance of BCI in day-to-day applications to
recognize mental states from real-time EEG. Previous works
have evaluated various CNN architectures for EEG-based
mental state detection but did not evaluate their performance
for day-to-day applications where the combined effect of
the three independent variables plays an important role. A
comparison of selected works that used either the same
dataset or used CNN for EEG-based classification with our
work has been presented in table II.

The particular aspects of BCI operation in day-to-day to
applications that were studied in our work are categorized as:
accuracy, latency, form factor, and inter-subject variability.

A. Accuracy

Our work explored how a difference in EEG basis rep-
resentation (time- & frequency-domain) affected CNN per-
formance on the same dataset. We found that domain had a
significant effect on performance. In particular, the frequency
domain outperformed the same dataset when represented as
a time-domain signal. Although there is a considerable dis-
cussion within the field over the optimal metric to compare
model performance when trained on different representations
of the same data, we would like to point out that in all
iterations the Frequency domain AUC was greater than
the Time domain AUC; suggesting that the result is quite
robust to analysis metric. This result is unexpected because

TABLE II
COMPARISON WITH PRIOR WORK

Publication Form-
factor

Latency Time-
domain

Frequency-
domain

[32] No Yes Yes No
[33] No No No Yes
[34] No Yes No Yes
[35] Yes Yes Yes No
[36] No No Yes Yes
Our work Yes Yes Yes Yes

the data contains the same underlying information in both
domains as related through the Discrete Fourier Transform.
Our results support prior work that has suggested that CNNs
can more effectively learn one representation over the other
[50], [51], [20]. This result has direct application to future
BCI recognition algorithms targeting real-time mental-state
recognition. Researchers exploring the performance of learn-
ing algorithms on similar cognitive tasks may expect that
a frequency-domain input representation will significantly
improve CNN performance relative to the same data in the
time domain.

B. Latency

Section IV-B presented a systematic analysis of the per-
formance of both time- and frequency-domains for different
window sizes. In a real-time BCI system, window size
defines the minimum latency for mental-state identification
from real-time EEG. Consistent with the literature, we
found that window size significantly affected performance.
In particular, longer windows had worse performance than
shorter windows. One possible explanation for the higher
performance for shorter windows is that shorter windows
effectively created more training samples in the same amount
of time.

Upon evaluating the performance of the classifier for vary-
ing time windows, we found an optimal learning performance
at 1s time windows. Further, there was only a mild decrease
in performance for 0.25s window size, for all the electrode
montages, as seen in figure 5. Future researchers may be
able to use this intuition to increase the performance of
their learning algorithms. The optimal time window might
be unknown a priori, and we argue that future researchers
should tune input window size as an important parameter



determining CNN performance. This has immediate impli-
cations for BCI user experience in the form of latency.

C. Form factor

In Section IV-C we used the same dataset to explore how
the performance of our classifier varied with subsets of the all
EEG channel montage. Instead of randomly sampling subsets
of electrodes, we guided our selection to focus on electrode
montages that are: widely used in BCI protocols (e.g. Motor
Imagery, P300), commercially available EEG form-factors
(e.g. Headband, Muse, Neurosky), and multimodal EEG-
based BCIs (combined prefrontal fNIRS and EEG). We
found that performance decreased only marginally when
fewer electrodes were used. In practice, this means that
BCI users can make similar levels of performance with
fewer EEG channels. This result has immediate relevance
to the design of BCI systems; if comparable performance
can be achieved with fewer electrodes, then it would be
advantageous to use fewer electrodes for the sake of sim-
plicity and speed. Determining which electrode subset to use
will depend upon context: what is the ”main” BCI protocol
used, and how the position of the sensors may affect system
usability.

Fig. 5. Performance across electrode montages(window size = 0.25s). The
dotted black line represents the acceptable threshold for BCIs.

D. Inter-subject variability and re-training

In our work, we followed a user-independent training
approach, where the classifier is trained on a group of
subjects and then tested on novel subjects. The classifier
was able to generalize well for a large population displaying
its resistance to inter-subject variability and its ability to
generalize well for new subjects. This has various benefits,
especially it does not need re-training for new subjects
and can be used directly, which is desirable for day-to-day
applications where subjects might change on a regular basis.

VI. LIMITATIONS & FUTURE WORK

The significant advantage we observed when using the
frequency domain representation may be an artifact of the
mental arithmetic task. It is also possible to measure mental
state with an Event-Related Potential (ERP) paradigm. In
this paradigm, time-windows are synchronized, or ”time-
locked,” to precisely timed external events. It is possible that
another dataset that uses precisely-defined external events
(e.g. arrow) to classify mental state might have higher
performance with a time domain representation. Future work
can test this by finding an existing ERP dataset and applying
a similar time and frequency comparison approach.

Our work demonstrated an optimal performance for our
algorithms using time windows of 1s. However, performance
with 0.25s windows only decreased slightly. There are some
interesting usability questions that arises for shorter window
sizes. In particular, are shorter windows with slightly lower
accuracy better than longer windows with higher accuracy
for overall accuracy of the BCI? Are BCI users willing
to sacrifice some degree of classification performance if it
meant that recognition could occur faster? We also found a
similar effect by varying the electrode montage. Although
the best performance occurred with all electrodes, montages
with even one electrode (e.g. P300) performed comparably
well. Future work would benefit from a better understanding
of human factors in the trade-off between classification
accuracy, latency and electrode montage. Because human
factors can be abstracted from the particulars of many
learning algorithms, future studies could simulate BCIs with
different performance, window sizes and electrode montages
to explore these effects systematically and without being
tethered to any particular learning algorithm.

VII. CONCLUSION

An objective analysis of the the performance of 1D-CNNs
with time and frequency domain representations of a publicly
available and vetted dataset has been presented in this paper.
Our analysis demonstrated that the frequency domain-based
approach outperforms that of the time domain for the same
dataset. We also studied the impact of possible limitations
to BCI systems such as latency and form factor on the
accuracy of the software classifier by experimenting with
varied window sizes and electrode montages. Results showed
that mental state estimation can be reliably performed on
window sizes as short as or even shorter than 1 second. Fur-
thermore, while using frequency domain methods, decreas-
ing the number of electrodes did not necessarily decrease
the performance of the CNN significantly. These findings,
along with suggested improvements in other BCI limitations
discussed in the paper, can be used to translate BCI research
into day-to-day applications.
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