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ABSTRACT 
Silent speech recognition has emerged as a promising approach for 
enabling hands-free and discreet interaction with head-worn de-
vices. In this paper, we present QuietSync, a multimodal system that 
combines inertial measurement unit (IMU) and contact electrode 
(ExG) signals to achieve accurate silent speech recognition using 
of-the-shelf devices. QuietSync utilizes an IMU attached to the 
lower part of the headphones near the ear and strategically places 
ExG electrodes on the headphones, glasses (nose and behind the 
ear), and face (for VR applications) to capture subtle movements and 
muscle activity associated with silent speech production. We con-
ducted a user study with 9 participants and successfully recognized 
12 commands with an accuracy of 94.2%. Our system leverages 
the complementary nature of IMU and ExG signals to enhance the 
robustness and reliability of silent speech recognition. The IMU 
captures subtle movements of the jaw and facial muscles, while 
the ExG electrodes detect low-amplitude surface muscle activity 
associated with speech production. We show that our system is not 
afected by the length and speech mannerisms of the commands, 
and can be fne-tuned for users of varied native languages with 
only 5 samples. Our fndings demonstrate the feasibility of using 
of-the-shelf head-worn devices to enable silent speech recognition, 
opening up new possibilities for seamless and discreet interaction 
with devices such as VR/AR headsets and earables. To the best of 
our knowledge, QuietSync is the frst system to enable silent speech 
interaction for multiple form factors. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools. 
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1 INTRODUCTION 
Silent speech interfaces (SSIs) are revolutionizing communication 
technologies [19] by enabling speech recognition through the cap-
ture of articulatory movements [15, 16, 31, 67] and neural sig-
nals [17], rather than vocal output. These interfaces enhance pri-
vacy and discretion, allowing users to command devices without 
being overheard, and provide communication alternatives for those 
with speech impairments. They are particularly useful in noisy 
settings and aiding accessible interactions where traditional voice 
recognition systems falter [25, 28] . In addition to the benefts spe-
cifc to SSIs, speech as an input modality—whether vocalized or 
silent—ofers several advantages over manual input methods such 
as typing or touch, especially in mobile contexts [60] . It enables 
hands-free operation, which is essential for accessibility and multi-
tasking scenarios, and speeds up the interaction, allowing for more 
natural and efcient communication with devices. 

Previous works in the feld of SSIs have explored various ap-
proaches to capture and interpret silent speech. Most of the ap-
proaches involve tracking one or multiple articulators like lips and 
tongue. Earlier studies have focused on visual methods [20, 56, 
68, 75], wireless signals [3, 30], RFID [73] and electromyography 
(ExG) [27, 43, 48]. In recent times researchers have investigated 
the use of ultrasound [9, 10, 33] , acoustic signals [15, 26, 76] , and 
IMU [29, 67] to track tongue and, jaw, and lip movements. 

Despite the potential of SSIs, their integration into wearable 
devices such as earbuds, headphones, VR headsets, and glasses in-
volves complex challenges. Current systems often rely on custom 
prototypes, which are either intrusive or tailored to a single form 
factor, limiting their practicality across varied device types. This 
lack of versatility hinders the widespread adoption of SSIs in con-
sumer electronics. Furthermore, while ExG electrodes are adept at 
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Figure 1: Use cases of QuietSync. (a) To enable discreet inter-
action in public spaces, (b) For interacting in Virtual Reality, 
and voice commands in "another reality", and (c) As a hands-
free alternate accessible modality. 

detecting subtle muscle movements crucial for silent speech, they 
typically require gel applications and particular sensor placement 
to ensure sensitivity, which can be cumbersome and impractical 
for everyday wear. These drawbacks pose signifcant barriers to 
the seamless integration of SSIs into wearable devices. 

This paper introduces QuietSync, a novel multi-modal system 
that addresses these challenges by combining IMUs and novel, foam-
based, dry electrodes (ExG). QuietSync aims to overcome the limi-
tations of previous works by providing a versatile and user-friendly 
solution for silent speech interaction. The system’s key contribu-
tions lie in its ability to enable SSI across four diferent form fac-
tors—headphones, earphones, glasses, and VR/XR systems—making 
it the frst of its kind. This breakthrough is achieved through the 
development of custom, dry, compressible, and novel ExG elec-
trodes that can be seamlessly integrated into head-worn devices, 
improving usability and comfort for the user. 

Moreover, QuietSync tackles the challenge of adaptability and 
personalization through sophisticated signal processing techniques 
and a lightweight machine-learning model that can be fne-tuned 
with as few as fve samples per user. This approach ensures that 
the system can quickly adapt to individual users’ speech patterns 
and mannerisms, enhancing its accuracy and reliability. 

We demonstrate the efectiveness of QuietSync through a con-
trolled study with nine users and twelve commands, achieving over 
95% accuracy across diferent form factors, speech mannerisms, 
and native languages. This high level of performance showcases 
the system’s robustness and potential for real-world applications. 
By successfully integrating IMU and ExG sensors into common 
head-worn devices, earphones, headphones, VR, and glasses, Qui-
etSync paves the way for extending the accessibility and usability 
of mobile and wearable technology through discreet, non-vocal 
interaction. This advancement could signifcantly beneft privacy-
sensitive applications, enhance accessibility for disabled users, and 
foster new modes of interaction in next-generation electronics. We 
show some of the potential applications of QuietSync in Figure 1 . 

In the subsequent sections, we provide background on silent 
speech technologies, review related work, and detail the hardware 
and system design of QuietSync. Next, we describe the implementa-
tion and data collection methods, followed by an evaluation of the 
system’s performance across diferent form factors. We conclude 
the paper with a discussion of our fndings and their implications 
for the design of efective silent speech interfaces. 

2 BACKGROUND 
In this section, we will discuss human speech articulation and 
articulator sensing via IMU and ExG electrodes. 

Figure 2: Temporo-mandibular Joint (TMJ) and the muscle 
groups involved in speech production. 

Note: Image Credit - Shutterstock 

2.1 Human Speech Articulation 
Human speech articulation involves the movement of articulators, 
such as the lips, tongue, alveolar ridge, and hard and soft palate to 
produce speech sounds. The articulators are controlled by muscles 
that contract and relax to create the complex movements required 
for speech production [11]. While the jaw is not actively involved 
in speech articulation, it moves up and down to felicitate the move-
ment of lips. Due to this, the jaw is also termed a secondary articu-
lator for its weak involvement [51]. The temporomandibular joints 
(TMJ), located at the junction of the lower jaw and skull, allow the 
lower jaw to move up and down. 

The muscles around the mouth (e.g., obicularis oris) control the 
shape and movements of the mouth and lips. The muscles around 
the eyes (e.g. obicularis oculi) contract and pull the skin of the 
forehead and cheek towards the nose, indirectly participating in 
speech production. These muscles are tightly connected and work 
together to produce speech sounds, afecting the contraction and 
relaxation of other facial muscles simultaneously. The movement 
of these muscles due to speech-related jaw motion produces subtle 
vibrations, called facial vibrations [44]. There is another class of 
vibrations present during speech articulation: bone-borne vibra-
tions, that are generated at the vocal cords during audible speech 
articulation, propagating through bone and muscles around the 
face to the TMJ [47]. Since we are interested in developing SSI, we 
flter out bone-borne vibrations using a low pass flter [29]. Figure 2 
shows the muscle groups involved in speech articulation and TMJ. 

2.2 Articulator Sensing 
The research community has recognized multiple sensing modal-
ities, EMG, ExG, IMU, Utltrasound, Camera, WiFi, and recently 
mmWave, for sensing the movement of articulators associated with 
silent speech. In our work, we focus on IMU and ExG and explain 
our design choice in Section 4. IMU usually consists of a gyroscope 
measuring the rate of change of angle, an accelerometer measuring 
linear acceleration, and a magnetometer measuring the orientation 
and rotation of the head regarding the Earth’s magnetic feld. We 
use accelerometer and gyroscope in our system as magnetometer 
can be highly sensitive to electromagnetic noise [34]. Accelerome-
ters can sufer from long-term drifts and gyroscopes with jerk noise 
and techniques like Kalman flter have been used in the past for 
noise suppression [37]. However, our data window is comparatively 
small (commands), therefore QuietSync is not very much afected 
by these noises. 
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We use custom electrodes (Section 4) to sense facial vibrations. 
These electrodes measure the electrical signals from muscles to the 
nervous system during contraction and relaxation. The electrode’s 
conductive material, such as silver/silver chloride (Ag/AgCl), allows 
it to convert the ionic currents from the body into electrical currents 
that can be measured by the recording device. These minute, low-
voltage signals are amplifed for accuracy sensing. We use multi-
step signal processing to remove efect of power line and body 
artifacts for robust sensing as described in Section 5 . 

3 RELATED WORK 
Silent Speech interfaces have been studied and researched thor-
oughly as an efcient alternative mode of interaction, with users 
widely accepting it [54]. SSIs broadly fall into two categories: contact-
based methods and contactless methods. 

3.1 Contactless Methods 
Contactless methods use sensors that do not require physical con-
tact with the user’s face and use wireless signals to gauge the 
movement of articulators. Earliest contactless methods employed 
the use of camera-based systems to track facial movements of 
lips [6, 20, 32, 53, 56, 66, 68, 75]. Since these systems track a pri-
mary articulator and the availability of large video datasets they 
are accurate and robust. However, these systems are sensitive to 
lighting conditions, are not portable, require a clear line of sight 
to the user’s face, and raise serious privacy concerns [6]. Along 
with camera, wirless signals, WiFi [71, 72] and Radio Frequency 
(RF) signals [14, 63], and ultrasound [9, 10, 33] have been used to 
track articulator movements. While these systems overcome the 
privacy concerns of camera-based systems, they are sensitive to 
environmental conditions, require calibration, and are susceptible 
to interference from other devices. Recently, the research commu-
nity has employed acoustic sensing on mobile devices to capture 
articulator movements [15, 23, 24, 40, 70, 76, 79]. The idea is to 
transmit ultrasound signals from mobile devices and capture the 
channel response using microphones. The channel response is then 
used to infer articulator movements. These systems are portable, do 
not require a line of sight, and are less sensitive to environmental 
conditions. However, they still require holding the phone in the 
hand, which might not be feasible in all scenarios like driving or 
accessibility needs. QuietSync overcomes the limitations of these 
systems and provides a real-time hands-free, and portable system 
for silent speech recognition. 

3.2 Contact-based Methods 
Contact-based methods often require one or multiple sensors placed 
on the face, inside the mouth, or on the articulators to infer un-
voiced speech. Electromyography (EMG) sensors are used to cap-
ture muscle activity associated with lips, jaw, and cheeks dur-
ing speech production [27, 43]. These sensors are often not so-
cially acceptable as skin electrodes are attached to the user’s face 
around the cheek and lips [48] or require either the use of gel elec-
trodes or specialized form-factor, hence can not be easily integrated 
with commercial wearable products. Sensors placed on the artic-
ulators [18, 22, 31, 38, 59, 61, 73], or even sensors retroftted to 
masks [21] can capture the articulators’ motion and hence infer 

unvoiced speech. However, some of these techniques are intrusive, 
wherein magnetic sensors are mounted on the tongue or inside the 
mouth, magnets glued to users’ tongues, or tattoos placed around 
users’ lips. These systems are not socially acceptable and require cal-
ibration. IMUs placed on TMJ have been used to capture jaw move-
ments during speech production. However, these systems require 
custom form-factor [67] or can only recognize phonemes and not 
words, rendering their applications limited [29]. Also, researchers 
have explored retroftting commercially available head-worn de-
vices with sensors to capture articulator movements [16, 77, 78] 
or use earphones to capture silent speech associated ear canal de-
formation for speech recognition [26]. These systems are portable, 
socially acceptable, and can be integrated with commercial head-
worn devices. However, these systems allow for only a single form 
factor, limiting their applications. In contrast, QuietSync is the frst 
multimodal system that can be integrated with a variety of head-
worn devices, such as headphones, glasses, and VR headsets, robust, 
socially acceptable, and portable for silent speech recognition. 

3.3 Other SSI Systems 
Along with speech-based SSI, non-speech-based SSI has been ex-
plored. These systems include gaze, tongue gestures, teeth gestures, 
and hand gestures. Gaze and dwell track the user’s eyeball move-
ment and dwell time to infer interaction [2, 74] and perform tasks 
like typing, selecting, and scrolling in VR/XR. Eye-based gestures 
have been explored extensively as well for device interaction [4, 42]. 
While these interactions provide a hands-free and discreet mode 
of interaction, they are not suitable for all scenarios, like driving, 
or when the user’s hands are occupied and demand continuous 
attention. Mouth-based interactions include teeth [49, 57, 69] and 
tongue-based interactions [16, 39, 50] are discreet, require very little 
movement, and can be integrated with head-worn devices. How-
ever, these interactions have a steeper learning curve and are not 
as intuitive as spoken language. Hand [13, 52, 55] and ear [1, 7, 8] 
based gestures have been explored and used for device interaction 
in commercially available wearables. These interactions are intu-
itive, easy to learn, and reliable. However, these interactions require 
the user’s hands to be free, can have a limited vocabulary, and are 
not discreet. We believe while QuietSync provides a hands-free, 
discreet, and intuitive mode of interaction, in the future, we can 
include other modes of interaction like tongue, teeth, and head 
motion gestures to provide a multimodal interaction system for 
head-worn devices. 

4 HARDWARE DESIGN 
In this section, we describe the design choices for our QuietSync’s 
prototype, including sensor placement and rationale. Our aim is 
to develop an unobtrusive, comfortable system that can be easily 
integrated with existing head-worn devices, requiring minimal or 
no modifcations. We focus our design around popular commercially 
available devices, such as VR/XR systems (HP Reverb G2 Omnicept 
Edition, Apple Vision Pro), ExG headbands (Muse 2), smart glasses 
(Rayban glasses from Meta), and headphones (Microsoft Surface 
Headphones). 

QuietSync integrates IMU and ExG sensors, which have been 
extensively used in developing silent speech recognition systems for 
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(a) Headphones (c) VR/XR

(b) Earphones (d) Glasses

ExG

ExG

ExG

ExG

IMU

Figure 3: Sensor placement for QuietSync on (a) headphones, 
(b) customized earphones, (c) VR/XR frame, and (d) cus-
tomized glasses. White circles represent ExG electrodes, 
while red circles represent IMUs. 
upper body wearables. Previous studies have shown that IMUs can 
reliably capture jaw movements and facial muscle activity around 
the temporomandibular joint (TMJ) [29, 67], while ExG sensors 
can detect low-amplitude surface muscle activity associated with 
speech production [5, 27]. This multi-modal combination of sensors 
allows us to capture both large movements of the articulators near 
the lower ear and subtle movements and muscle activity of the 
facial muscles associated with silent speech production. 

■IMU Placement. Most current ear-worn devices, such as Air-
pods Max, Bose NC 700, and Bose QC35, are equipped with IMU 
sensors. Although the IMUs in these devices might not be optimally 
positioned for capturing jaw movements, they can be repositioned 
within the earable to enable silent speech sensing. We place the 
IMU on the lower part of the headphones, near the ear, to capture 
jaw movements and facial muscle activity around the TMJ. Unlike 
previous works that placed the IMU directly on the TMJ, we ob-
serve that jaw motion signals can be detected from the lower end of 
the ear, making QuietSync integrable with commercially available 
headphones. 

■ExG Placement. To determine ExG sensor placement, we stud-
ied human facial muscle anatomy and speech articulation presented 
in Background 2.1. While most current VR/XR or other head-worn 
devices are not equipped with ExG to capture facial vibrations, we 
believe that ExG can be augmented in future devices. To this end, 
we aim to select sensor locations that can be easily integrated. The 
ExG electrodes are placed on the headphones, glasses (nose and 
behind the ear), and face (for VR applications) to capture the sub-
tle movements and muscle activity associated with silent speech 
production. 

■Custom Eletrodes. To address the limitations of gel or sticker-
based electrodes, we developed novel dry electrodes using 3D-
printed molds, castable urethane [64] foam, and conductive medi-
cal [45] electrode ink. Our electrodes can be installed directly on 
devices, conforming to diferent body topographies due to the com-
pressible properties of the urethane foam, thus enhancing comfort 
and ease of use. Our fabrication process involves designing a two-
part mold with a cavity for the electrode and a lid with overfow 
holes. The cavity includes a 1.5 mm through-hole for wire place-
ment and a channel for wire exit. After applying mold release and 
allowing it to dry, we thread a partially stripped wire through the 
hole, ensuring the stripped end extends out of the mold. We then 
cast the electrode with the chosen urethane foam. To complete the 
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Figure 4: System design of QuietSync for silent speech recog-
nition. 
electrode, we clip the exposed wire end fush with the electrode 
body and coat the skin-facing surface with conductive ink, curing 
it according to the manufacturer’s instructions. Finally, we solder a 
connector to the remaining wire end. Our choice of materials was 
based on factors such as durability, skin safety, and electrical con-
ductivity. We chose SmoothOn FlexFoam-It™ 6 for its long pot life 
and ideal compression properties [65] , and Creative Materials 113-
09 ink for its high conductivity, skin safety, and resistance to fexing 
and creasing [46] . The ink also allows us to create multiple discrete 
electrodes on a single surface by applying unconnected patches. 
To achieve successful results, we recommend several precautions, 
including using a mold release agent, incorporating overfow holes 
in the mold lid, taping the wire in place before casting, and prop-
erly curing the conductive ink. We acknowledge that limitations 
of our process include ink wear over time, which can be addressed 
by reapplying and curing the ink, and variation due to manual 
fabrication. In our future work, we plan to explore embedding elec-
trodes directly into devices and investigating alternative materials 
for improved durability. 

In summary, the IMU captures the large movements of the ar-
ticulators around the lower ear, while the ExG electrodes detect 
the low-amplitude surface muscle activity associated with speech 
production. Figure 3 shows the placement of the sensors for (a) 
headphones, (b) earphones, (c) VR/XR, and (d) glasses for Quiet-
Sync. 

5 SYSTEM DESIGN 
This section elaborates on the design and working components of 
our system. QuietSync enables silent speech interaction with head-
worn devices by fusing IMU and ExG signals. Our system design is 
shown in Figure 4. The system comprises three main components: 
data pre-processing, feature extraction, and classifcation. We aim 
to remove the efect of motion artifacts from ExG and the efect 
of wearing position from IMU, extract features from the time and 
frequency domain of the multi-modal system that encodes speech 
characteristics, and train a lightweight classifer that can be adapted 
to a new user with as low as 5 samples. 

5.1 Data Pre-processing 
We pre-process the raw IMU and ExG data to mitigate the efects 
of orientation, gravity, motion, and powerline noise. For the IMU’s 
accelerometer data, we employ a high-pass flter with a 0.5 Hz 
cutof frequency to remove the infuence of gravity. Additionally, 
we perform ofset removal by subtracting the mean of the frst 0.1 
seconds of data from the entire window for each axis. To eliminate 
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the impact of orientation on the gyroscope data, we apply an inverse 
rotation matrix to align each data point to a consistent reference 
frame [41]. This ensures that the user’s device wearing orientation 
does not afect the system’s performance. 

For the ExG data, we apply a notch flter at 60 Hz to suppress 
powerline noise, and then apply a 50 Hz low-pass flter. To mitigate 
motion artifacts, we employ the common rejection method, sub-
tracting the data of reference electrodes [71] from the electrodes of 
interest. We also remove the efect of baseline drift by subtracting 
the mean of the frst 0.1 seconds of data from the entire window. 
Furthermore, we aggregate the data from all electrodes to obtain a 
single-channel representation for each window and modality. This 
approach reduces the number of features and helps mitigate the 
impact of noise in the data. 

5.2 Feature Extraction 
Figure 5 shows time domain representations of all the commands 
for both modalities. For IMU we show the estimated orientation 
and for ExG we show summed values for all the electrodes. We 
extract both time and frequency domain features from the pre-
processed IMU and ExG data to capture the subtle movements and 
muscle activity associated with silent speech production. We use 9 
statistical features for the time domain, including mean, standard 
deviation, skewness, kurtosis, jerk, zero-crossing rate, area under 
the curve, energy, and range. For the frequency domain, we compute 
the power spectral density (PSD) using Welch’s method with a 1-
second window and 50% overlap. We extract the PSD features in the 
0-50 Hz frequency range, as this captures the majority of the speech-
related muscle activity. To make PSD features invariant to the length 
of the signal, we normalize them by dividing each frequency bin 
by the total power in the 0-50 Hz range. We concatenate the time 
and frequency domain features to create a feature vector for each 
window and modality. We take the frst 8 coefcients of the PSD 
as features, as they capture the majority of the signal power. Our 
IMUs are sampled at 100 Hz and ExG at 1000 Hz. 

5.3 Word classifcation 
After we have preprocessed the data and extracted features, we 
train an SVM classifer to recognize the silent speech commands. 
For classifcation, we employed a Support Vector Machine (SVM) 
with a radial basis function (RBF) kernel, as it is well-suited for 
small datasets [12]. We trained both user-dependent and user-
independent models to evaluate the system’s performance across 
diferent scenarios. For the user-dependent classifer, we trained a 
separate SVM for each user, ensuring personalized silent speech 
recognition. We utilized 5-fold cross-validation to tune the hyper-
parameters, specifcally, gamma(� ) and cappa(�), optimizing for 
accuracy as the primary metric. This approach allowed us to fnd 
the best-performing model confguration for each user. 

Additionally, we explored a user-independent model to assess 
the system’s ability to generalize across users without the need 
for extensive individual training. To enhance the performance of 
the user-independent model, we fne-tuned it using just 5 samples 
of each word per user. This fne-tuning process helped adapt the 
model to the specifc characteristics of each user’s silent speech 
patterns while minimizing the training data requirements. 

Interaction Type Commands 

Device Interaction 
Call Mom, Clear Notifcation, 
Clear Calendar, Lock Screen 

Meeting Controls 
Close Camera, Open Camera, 
Mute Microphone, Join Meeting, 
Leave Call 

Media Controls Decrease Volume, Increase Volume, 
Play Music 

Table 1: We collect 12 commands from 3 categories. 

By focusing on SVMs and leveraging cross-validation for hy-
perparameter tuning, we achieve high accuracy in silent speech 
recognition, even with the limited dataset size. 

6 IMPLEMENTATION AND DATA 
COLLECTION 

This section describes the data collection process and implementa-
tion details of QuietSync. We frst provide an overview of the data 
collection setup and software, followed by a detailed description of 
our user study. 

6.1 Data Collection Setup 
For collecting IMU data, we used a sensor from Mbient [36], sam-
pling the accelerometer and gyroscope at 100 Hz, with a full-scale 
reading of ± 4g and 250 degrees per second, respectively. To collect 
ExG data, we employed the BrainVision Recorder [58], labeling elec-
trodes according to their position and sampling at 1000 Hz. In total, 
we collected data from 28 electrodes. In addition to IMU and ExG 
data, we recorded audio and video using a laptop camera and exter-
nal microphone for data sanity checks. All data streams were syn-
chronized using the Lab Streaming Layer (LSL) [35], which enables 
synchronization through per-sample timestamps and time synchro-
nization for multi-modal interfaces. The data from all streams was 
stored in an extended data format (XDF) fle using the LSL Lab 
Recorder. Figure 6 illustrates our data collection pipeline. 

6.2 User Study 
We conducted a user study with 9 participants of diverse age groups, 
ethnicities, and native languages, collecting data for 12 commonly 
used speech interaction commands, as shown in Table 1. Our data 
collection study was approved by the Institutional Review Board 
(IRB) of our institute prior to the study. All participants provided 
informed consent and were compensated for their time with a gift 
card. We recruited participants from our organization, and they 
were free to leave the study at any time without penalty. Table 2 
shows the demographics of our participants, which included a mix 
of age groups, native languages, and facial structures (Asian, White, 
Black). We required participants to have no history of speech dis-
orders or other medical conditions that could afect their speech 
production. To maintain hygiene and ensure better contact be-
tween the electrodes and the skin, we cleaned the prototypes with 
an alcohol solution before each data collection session and asked 
participants to wipe their faces with wet wipes. 

We collected data from users in silent and audible manners. We 
displayed one command at a time on a monitor, using diferent 
color codes: green for audible and red for inaudible, randomizing 
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(a) Call Mom (b) Clear Notifcation (c) Clear Calendar (d) Close Camera (e) Decrease Volume (f) Increase Volume 

(g) Join Meeting (h) Leave Call (i) Lock Screen (j) Mute Microphone (k) Play Music (l) Open Camera 

Figure 5: Time domain representation of the 12 commands for IMU and ExG. Green (Summed ExG values), Yellow (IMU 
orientation x), Blue (IMU orientation y), and Orange (IMU orientation z). 

Figure 6: Data fow of QuietSync for ofline and online pro-
cessing 

Age 22-31 
Gender 5 male, 4 female 
Native language 3 Hindi, 2 English, 2 Chinese, 2 Italian 
Ethnicity 5 Asian, 3 White, 1 Black 

Table 2: User demographics for our study 

the order of commands. Participants were instructed to press the 
spacebar while articulating each command, and we recorded the 
timestamps for key presses and releases, which were streamed in 
the LSL stream and later used to create windows for each command. 
The participants could pause the session and press the backspace 
key to display the previous command. We collected 40 samples 
for each command in the silent manner and 15 samples for each 
command in the audible manner. Also, we collected 5 samples 
per command in the silent manner for each user to train a user-
independent model. The data was collected in two sessions. In total, 
we collected 1080 samples for silent speech and 405 samples for 
audible speech. Figure 7 shows the data collection setup. 

7 EVALUATION 
In this section, we will discuss the evaluation of our system, Quiet-
Sync for silent speech recognition. We will frst present the results 

Command A/V Ground Truth VR with ExG Headphones with ExG
Earphones with ExG

IMU

Figure 7: Data collection setup for QuietSync. We collect data 
from IMU, ExG, audio, and video streams, synchronized using 
LSL. 

of our user study, followed by an analysis of the system’s perfor-
mance across diferent scenarios and settings. We will also discuss 
the impact of diferent sensing modalities and form factors on the 
system’s accuracy and reliability. Finally, we will present Quiet-
Sync s real-time performance. We show that QuietSync chieves (1) 
more than 95% accuracy in user-dependent and > 93% accuracy in 
user-independent scenarios with only 5 samples (2) is agnostic to 
the native language of the user, speech mannerisms, and length 
of the command, and (3) can be integrated with diferent sensing 
modalities and form factors. 

7.1 Overall Performance 
We report the accuracy of user-dependent and user-independent 
models for all commands in Figure 8a and Figure 8b, respectively. 
We achieve more than 90% recognition accuracy for 11 out of 12 
commands for user-dependent models achieve > 90% accuracy, with 
an average accuracy of 94.2%. To train the user-independent model, 
we use randomly selected 5 samples for each word and achieve > 
90% accuracy in 6 out of 12 commands, with an average accuracy 
of 93.5%. We rest of the evaluations we report the results for user-
dependent models, unless otherwise mentioned. 

7.2 Performance Across Diferent Modalities 
One of the most crucial aspects of QuietSync is its ability to inte-
grate diferent sensing modalities and form factors. We evaluate the 
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(a) We achieve >= 90% accuracy for 11 out of 12 commands for per-
sonalized models. 
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(b) Using only 5 samples for each word, we can train a user-
independent model and achieve >85% accuracy for 11 commands. 

Figure 8: Confusion matrix for commands recognition using 
IMU and ExG. 

performance of QuietSync across various modalities (Figure 9(a)), 
isolated form factors such as glasses, earphones, headphones, and 
VR/XR headsets (Figure 9(b)), and diferent form factor combina-
tions, including headphones, glasses, and VR/XR headsets (Fig-
ure 9(c)). Remarkably, we achieve over 80% accuracy for all but 
two combinations, demonstrating the robustness and reliability 
of QuietSync across diferent settings. Our fndings reveal that the 
combination of IMU and ExG sensors across all modalities provides 
the best performance, with an impressive accuracy of 94%. This 
underscores the value of multi-modal signals for silent speech recog-
nition, as they capture both large movements of the articulators and 
subtle muscle activity associated with speech production. When 
used independently, ExG sensors achieve an accuracy of 84.3%, 
while IMU sensors alone reach 79.2%. Although this accuracy is 
lower than that reported in [67], it is important to note that, unlike 
their system, QuietSync can be integrated with custom headphones. 
In our analysis of isolated form factors, only glasses and earphones 

exhibit slightly lower accuracies of 76.5% and 77.3%, respectively. 
This can be attributed to the limited number of ExG sensors on 
glasses (only 2 on the nose) and earphones (3 inside the ear) that are 
in contact with facial muscles to capture facial vibrations. In con-
trast, headphones (with multiple ExG electrodes and IMU) and VR 
headsets (multiple ExG electrodes) demonstrate accuracies above 
80%. One of the most signifcant fndings of QuietSync is presented 
in Figure 1c, which highlights the performance of combining multi-
ple form factors. We achieve over 85% accuracy when combining 
glasses, earphones, and headphones across various combinations. 
We believe these results are particularly meaningful, as most of 
these form factor combinations can be worn together in daily life, 
enabling hands-free and discreet interactions. 

7.3 Impact of Diferent settings 
We evaluate the impact of the native language of the user, speech 
mannerisms (silent v/s audible), and length of the command on the 
performance of QuietSync. 

■ Impact of native language. Figure 10 shows the mean word 
recognition accuracy for users with diferent native languages. We 
achieve >=90% accuracy for all users, demonstrating the system’s 
agnostic to the native language of the user. This is a signifcant 
advantage of QuietSync as it can be used by users from diferent 
linguistic backgrounds without the need for extensive training or 
customization. We attribute this ability of the system to multiple 
sensing locations for ExG. Previous research has shown that people 
can have varied facial structures based on ethnicity [62]. By placing 
ExG sensors in diferent locations, we introduce redundancy in the 
system, helping us in capturing facial vibrations for diferent users. 

■ Impact of command length. We evaluate the system’s per-
formance for commands with diferent lengths. We achieve > 90% 
accuracy for all commands, demonstrating the system’s agnostic-
ity to the length of the command. This is a signifcant advantage 
of QuietSync as it can be used for wide applications and scenarios, 
such as short commands for device interaction (Call Mom (94%) ) or 
longer commands for device control (Clear Notifcation (91%)). We 
achieve > 90% accuracy for all commands, highlighting the system’s 
robustness and reliability across diferent syllable lengths. 

■ Impact of speech mannerisms We also evaluate the system’s 
performance for silent and audible speech mannerisms by training a 
user-dependent classifer using silent testing on audible commands, 
and vice-versa. As shown in Table 3, we achieve > 90% accuracy for 
both silent and audible speech, highlighting the system’s robustness 
and reliability across diferent speech styles. This is a signifcant 
advantage of QuietSync as it can be used in diferent scenarios and 
settings, such as noisy environments where the user can speak 
audibly but traditional speech recognition systems will not work or 
when the user wants to articulate silently for discreet interaction. 

7.4 Real-time Performance 
We implemented QuietSync for real-time evaluation using LSL 
streaming and Python, testing with fve users. To demonstrate 
its interaction capabilities, we integrated it with GPT-4.turbo for a 
"Name, Place, Animal, Thing?" game. We mapped four commands 
to "yes", "no", "maybe", and "you got it". For each user, we saved 
a user-dependent model. We used an empirical threshold on IMU 
data for command detection, replacing keyboard keystroke timings. 
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Figure 9: Performance of diferent sensing modalities and form factors. (a) shows the performance of diferent modalities, 
(b) shows the performance of combinations of diferent modalities for 4 form-factors, and (c) shows the performance of 
combinations of diferent form-factors 
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Figure 10: Mean word recognition accuracy users with difer-
ent native languages. 

Classifer 
Confguration 

Train Audible 
Test Silent 

Train Silent 
Test Audible 

Train Audible 
Test Audible 

Train Silent 
Test Silent 

Accuracy% 91.5±2.4 92.3±1.7 90.8±5.9 94.2±3.8 

Table 3: Performance of QuietSync for silent and audible 
speech mannerisms. 

Data preprocessing and feature extraction ran in parallel on the 
windowed input stream. Our system achieved a mean latency of 
1.35 seconds: 0.05 seconds for windowing, 0.9 seconds for prepro-
cessing and feature extraction, and 0.3 seconds for classifcation. 
We believe optimization can reduce this latency further. Each user 
played the game 10 times. We defned task completion as GPT 
guessing the word or users correctly saying it 15 times consecu-
tively. We achieved a 90% task completion rate across all users, 
demonstrating QuietSync’s real-time performance and reliability. 

8 DISCUSSION 
QuietSync is an early attempt at developing a multi-modal sys-
tem for silent speech recognition. We have shown that combining 
IMU and ExG signals can signifcantly improve the accuracy and 
robustness of silent speech recognition. 

Limitations. QuietSync to the best of our knowledge, is the 
frst system to enable silent speech interaction with multiple form 
factors. However, in its current early stage, we have identifed the 
areas of improvement. We tested with a small number of users. Al-
though the sample size is limited, the feld of SSI is still developing, 
and similar studies have provided valuable insights with compa-
rable sample sizes. Our diverse sample includes a range of ages, 
genders, native languages, and ethnicities 2. Our future studies will 

expand the sample size to enhance the scope and impact of our 
fndings. Also, our command set is limited and lacks an explicit 
’other’ category. We selected 12 commands of varying lengths and 
interaction categories based on a formative study within our organi-
zation. Our future iterations will expand the command set, include 
user-defned commands, and add an ’other’ category to improve 
fexibility and robustness. Finally, our system was evaluated in a 
controlled environment. Real-world testing is crucial, as factors 
like body movement and motion artifacts may afect performance. 
Future work will focus on testing in diverse environments to assess 
robustness and identify challenges. 

Integrating QuietSync with existing systems We implemented 
a gamifed real-time demo of QuietSync to showcase its potential 
for integration with diferent services. In the future, we plan to 
integrate QuietSync with existing voice assistants like Cortana, 
Alexa, Google Assistant, and Siri to enable silent speech interaction 
with smart devices in day-to-day applications like MS Teams and 
hands-free typing for people with disabilities. 

9 CONCLUSION 
In this paper, we presented QuietSync a multimodal system that 
combines IMU and ExG signals to enable silent speech recognition 
with head-worn devices. We conducted a user study with 9 partici-
pants and successfully recognized 12 commands with an accuracy 
of 94.2%. Our system leverages the complementary nature of IMU 
and ExG signals to enhance the robustness and reliability of silent 
speech recognition. The IMU captures subtle movements of the jaw 
and facial muscles, while the ExG electrodes detect low-amplitude 
surface muscle activity associated with facial vibrations. QuietSync 
is agnostic to speech mannerisms, length of commands, and the 
native language of the users. Our fndings demonstrate the feasibil-
ity of using of-the-shelf head-worn devices to enable silent speech 
recognition, opening up new possibilities for seamless and discreet 
interaction with devices such as VR/AR headsets and earables. 
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